Integration by Parts - practice Introduction Familiar Skilled Unhinged Night Mode ∫xcos(πx)dx;u=x,dv=cos(πx)dx 1πxsin(πx)+1π2cos(πx)+C ∫xe2xdx;u=x,dv=e2xdx 14(e2x⋅2x−e2x)+C ∫xcos(πx)dx;u=x,dv=cos(πx)dx 1πxsin(πx)+1π2cos(πx)+C ∫sin−1xdx;u=sin−1x,dv=dx xarcsin(x)+1−x2+C ∫lnxx2dx −ln(x)x−1x+C ∫xsin10xdx −110xcos(10x)+1100sin(10x)+C ∫ye−ydy −e−yy−e−y+C ∫cos−1xdx xarccos(x)−1−x2+C ∫01x3xdx 3ln(3)−2ln2(3) ∫z10zdz −10−zzln(10)−1ln2(10)⋅10−z+C ∫tan−1(2y)dy −12ln|cos(2y)|+C ∫(lnx)2dx xln2(x)−2(xln(x)−x)+C ∫lnxdx 12xln(x)−12x+C ∫t2sinβtdt −1βt2cos(βt)+2β3(βtsin(βt)+cos(βt))+C ∫e3xcosxdx e3xsin(x)10+3e3xcos(x)10+C ∫exsin(πx)dx −πexcos(πx)π2+1+exsin(πx)π2+1+C ∫0πxsinxcosxdx −π4 ∫0π/3sinxln(cosx)dx −12+12ln(2) ∫xln(1+x)dx 12ln(1+x)(1+x)2−ln(1+x)−xln(1+x)−14(1+x)2+1+x+C ∫π/2πθ3cos(θ2)dθ −2−π4 ∫arcsin(lnx)xdx ln(x)arcsin(ln(x))+1−ln2(x)+C ∫cos(lnx)dx 12xsin(ln(x))+12xcos(ln(x))+C \[ Hard Q1] \[ Hard A1] \[Hard Q2] \[Hard A2] New Flashcard